Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add filters








Year range
1.
International Journal of Oral Biology ; : 49-54, 2022.
Article in English | WPRIM | ID: wpr-966964

ABSTRACT

Taste is a basic sensation to get attracted toward nutritious foods or avoid possible harmful substances. The basic taste qualities in humans consist of sweet, bitter, umami, salty, and sour. Basically, sweet and umami tastes make food attractive, whereas bitter and sour tastes make it avoidable. Salty taste comprises basic salty and high salt taste.The basic salty taste is known as amiloride-sensitive salty taste, which is inhibited by amiloride, but the high salt taste is not sensitive to amiloride. Moreover, high salt taste can also cause avoidance behavior in human beings. Sodium, one of the most important cations in the body fluids of vertebrates, controls the volume of total body fluids and is a risk factor for cardiovascular diseases, such as hypertension. The concentration of sodium in body fluids must be under delicate control. A distinction between the salty taste and high salt taste would be a contributing mechanism to control the volume and/or osmolarity of body fluids.

2.
The Korean Journal of Physiology and Pharmacology ; : 603-611, 2021.
Article in English | WPRIM | ID: wpr-919323

ABSTRACT

Taste-responsive neurons in the nucleus of the solitary tract (NST), the first gustatory nucleus, often respond to thermal or mechanical stimulation. Alcohol, not a typical taste modality, is a rewarding stimulus. In this study, we aimed to investigate the effects of ethanol (EtOH) and/or temperature as stimuli to the tongue on the activity of taste-responsive neurons in hamster NST. In the first set of experiments, we recorded the activity of 113 gustatory NST neurons in urethane-anesthetized hamsters and evaluated responses to four basic taste stimuli, 25% EtOH, and 40°C and 4°C distilled water (dH2O). Sixty cells responded to 25% EtOH, with most of them also being sucrose sensitive. The response to 25% EtOH was significantly correlated with the sucrose-evoked response. A significant correlation was also observed between sucrose- and 40°C dH2O- and between 25% EtOH- and 40°C dH2O-evoked firings. In a subset of the cells, we evaluated neuronal activities in response to a series of EtOH concentrations, alone and in combination with 32 mM sucrose (EtOH/Suc) at room temperature (RT, 22°C–23°C), 40°C, and 4°C. Neuronal responses to EtOH at RT and 40°C increased as the concentrations increased. The firing rates to EtOH/Suc were greater than those to EtOH or sucrose alone. The responses were enhanced when solutions were applied at 40°C but diminished at 4°C. In summary, EtOH activates most sucrose-responsive NST gustatory cells, and the concomitant presence of sucrose or warm temperatures enhance this response. Our findings may contribute to elucidate the neural mechanisms underlying appetitive alcohol consumption.

3.
International Journal of Oral Biology ; : 113-121, 2018.
Article in English | WPRIM | ID: wpr-740079

ABSTRACT

Taste is closely related to intake of food. Taste perception is also influenced by type of food ingested, and nutrition and health status. Bitter taste plays an important role in the survival of human and animals to avoid probable toxic and harmful substances. Vertebrate animals recognize bitter taste through type 2 taste receptors (T2Rs). Several T2Rs have been expressed extra-oral such as the gastrointestinal tract, respiratory tract, urogenital tract, brain and immune cells, and parts of their functions are being revealed. This review will discuss physiological roles of T2Rs in relation to innate immunity, secretion and smooth muscle contraction expressed in extra-oral cells and tissues, and we summarize relationships between polymorphisms in T2Rs and general or oral diseases. It is not a coincidence that animals pay much genetic costs for taste and smell during evolution.


Subject(s)
Animals , Humans , Brain , Gastrointestinal Tract , Immunity, Innate , Muscle, Smooth , Respiratory System , Smell , Taste Perception , Vertebrates
4.
International Journal of Oral Biology ; : 5-11, 2018.
Article in Korean | WPRIM | ID: wpr-740063

ABSTRACT

Recent findings indicate that Type 2 taste receptors (T2Rs) are expressed outside the gustatory system, including in the gastrointestinal tracts and the exocrine glands, such as the submandibular (SM), parotid (P), lacrimal (L) glands and pancreas (PC). Specifically, T2Rs are found in some of the gastrointestinal endocrine cells, and these cells secreted peptide hormones in response to stimulation by bitter-tasting compounds. The results show that T2Rs may have significant physiological roles besides bitter taste reception. The functions of the T2Rs in the exocrine glands remain poorly understood. An expression levels analysis of T2Rs will help to determine those functions in the exocrine glands. The expression levels of the T2Rs in the exocrine glands were discovered via the qPCR. C57BL/6J mice of 42~60-day-old were used. Messenger RNAs were extracted from S, P, L and PC. Cloned DNAs were synthesized by reverse transcription. Quantitative PCRs were performed using the SYBR Green method. The expression levels of the T2Rs were calculated as relative expression levels to that of the GAPDH. The statistical significance among the observed exocrine glands was tested using the variance analysis (ANOVA test). Tas2r108, out of murine 35 T2Rs, was the most highly expressed in every observed exocrine gland. This finding was similar to previous results from tongue papillae, but the expression levels were lower than those of the tongue papillae. Tas2r137 of SM, P, L and PC were expressed a little lower than that of tongue papillae. The T2Rs in the exocrine glands may play slightly different roles from those in the tongue. We suggest that physiological studies such as a patch clamp and functional Ca²⁺ imaging of acinar cells are necessary for understanding the Tas2r108 functions.


Subject(s)
Animals , Mice , Acinar Cells , Clone Cells , DNA , Enteroendocrine Cells , Exocrine Glands , Gastrointestinal Tract , Methods , Pancreas , Peptide Hormones , Polymerase Chain Reaction , Reverse Transcription , RNA, Messenger , Tongue
5.
Journal of Educational Evaluation for Health Professions ; : 11-2017.
Article in English | WPRIM | ID: wpr-212872

ABSTRACT

PURPOSE: In addition to dental education, a system for the evaluation and management of dental licensing and certification is required to meet the growing societal demand for more competent dentists. In this study, the Delphi technique was used to gather opinions from a variety of professionals on the problems of and remedies for the dental license management system in Korea. METHODS: Delphi surveys were conducted from April 2016 to October 2016 in South Korea. A variety of dental professionals were included and categorized into 3 groups according to their expertise as follows: the basic dentistry group, the clinical dentistry group, and the policy group. The Delphi technique was conducted in 3 rounds of e-mail surveys, each with different questions that probed with increasing depth on the dental license management system. In each successive round, the responses were categorized, scored on a Likert scale, and statistically analyzed. RESULTS: After categorizing the results of the first survey and ranking the results of the second survey using the Delphi technique, regulation by a licensing authority was found to be the most critical issue. This was followed by the license renewal system, continuing education, a tiered licensure system, improvement of foreign license approval, and utilization of retirees, in decreasing order of importance. The third Delphi survey showed a similar ranking, with regulation by a licensing authority being the major concern. Opinions regarding the dental license management system were provided as open-ended responses. The responses of the 3 groups showed statistically significant differences in the scores for the issue of regulation by a licensing authority. After re-grouping into the dentistry group and the policy group, the issue received a significantly higher score in the dentistry group. CONCLUSION: The quality of dental treatment should be managed to protect patients and dental professionals. For this purpose, the establishment of an independent license regulation authority along with legislative changes is required.


Subject(s)
Humans , Certification , Delphi Technique , Dentistry , Dentists , Education, Continuing , Education, Dental , Electronic Mail , Korea , Licensure , Licensure, Dental , Quality Control
6.
International Journal of Oral Biology ; : 25-32, 2016.
Article in English | WPRIM | ID: wpr-32082

ABSTRACT

The tongue has 4 kinds of papillae, which are filiform, fungiform (FU), foliate (FO) and circumvallate papilla (CV). Tongue papillae except filiform papilla include taste buds. The papillae differ in taste sensitivities, likely due to differential expression of taste receptors. In this study, we evaluated differences in the expression levels of taste receptors in FU, FO and CV. Male DBA2 mice, 42-60 days old, were used in the study. Messenger RNAs were extracted from the murine epithelial tissues including FU, FO and CV. Cloned DNAs were synthesized by reverse transcription. Quantitative PCRs (qPCRs) were performed to determine mRNA expression levels of taste receptors. Results of qPCR revealed that the relative expression levels and patterns were different among FU, FO and CV. All three type 1 taste receptors were expressed FU, FO and CV at varying relative expression levels. All 35 kinds of type 2 taste receptors showed higher expression in FO and CV than in FU. Tas2r108 and Tas2r137 showed the two highest expression levels in all tested papillae. The differential expression levels and patterns of taste receptors among the three papillae could contribute to the different physiological sensitivities by tongue areas. Additional studies such as in situ hybridization or taste receptor cell activity recording is necessary to elucidate the functional relationship between expression levels of taste receptors and taste sensitivity.


Subject(s)
Animals , Humans , Male , Mice , Clone Cells , DNA , In Situ Hybridization , Mice, Inbred DBA , Polymerase Chain Reaction , Reverse Transcription , RNA, Messenger , Taste Buds , Tongue
7.
International Journal of Oral Biology ; : 97-103, 2016.
Article in Korean | WPRIM | ID: wpr-186472

ABSTRACT

Mammals have 3 pairs of major salivary glands i.e., the parotid, submandibular, and sublingual glands. Saliva secretion of these glands is modulated by taste perception. Salivary glands are composed mainly of acinar and ductal cells. Primary saliva is secreted by acinar cells and modified during ductal flow. Recently, of the murine 35 bitter taste receptors, Tas2r108 was expressed at highest levels in the submandibular gland by qPCR. Further, Tas2r108-transfected cells respond to a range of bitter compounds, such as denatonium, quinine, colchicine, diphenidol, caffeine and dapson. The objective of the present study was to characterize the expression of Tas2r108 mRNA in acinar and/or ductal cells of the submandibular gland using in situ hybridization (ISH). Male 42-60 days old DBA2 mice were used in the study. Messenger RNAs were extracted from the submandibular gland for generating digoxigenin (DIG) labeled-cRNA probes. These probes were transcribed in anti-sense and sense orientation using T7 RNA polymerase. Dot blot hybridization was performed using DIG labeled-cRNA probes, in order to estimate integrity and optimal diluting concentration of these probes. Subsequently, ISH was performed on murine submandibular gland to detect Tas2r108 mRNA. Dot blot hybridization data demonstrated that Tas2r108 DIG labeled-cRNA anti-sense probes specifically detected Tas2r108 cDNA. ISH results showed that the anti-sense probes labeled acinar and ductal cells in the submandibular gland, whereas no staining was visible in sense controls. Interestingly, the Tas2r108 expression levels were higher in acinar than ductal cells. These results suggested that Tas2r108 might be more associated with primary saliva secretion than with ductal modification of saliva composition.


Subject(s)
Animals , Humans , Male , Mice , Acinar Cells , Antisense Elements (Genetics) , Caffeine , Colchicine , Digoxigenin , DNA, Complementary , DNA-Directed RNA Polymerases , In Situ Hybridization , Mammals , Quinine , RNA, Messenger , Saliva , Salivary Glands , Sublingual Gland , Submandibular Gland , Taste Perception
8.
International Journal of Oral Biology ; : 107-114, 2014.
Article in Korean | WPRIM | ID: wpr-190841

ABSTRACT

Taste is an important sense in survival and growth of animals. The growth and maintenance of taste buds, the receptor organs of taste sense, are under the regulation of various neurotrophic factors. But the distribution aspect of neurotrophic factors and their receptors in distinct taste cell types are not clearly known. The present research was designed to characterize mRNA expression pattern of neurotrophic factors and their receptors in distinct type of taste cells. In male 45-60 day-old Sprague-Dawley rats, epithelial tissues with and without circumvallate and folliate papillaes were dissected and homogenized, and mRNA expressions for neurotrophic factors and their receptors were determined by RT-PCR. The mRNA expressions of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), receptor tyrosine kinase B (TrkB), exclusion of nerve growth factor (NGF), neurotrophin-4/5 (NT4/5), receptor tyrosine kinase A (TrkA), receptor tyrosine kinase C (TrkC), and p75NGFR were observed in some population of taste cell. In support of this result and to characterize which types of taste cells express NT3, BDNF, or TrkB, we examined mRNA expressions of NT3, BDNF, or TrkB in the PLCbeta2 (a marker of Type II cell)- and/or SNAP25 (a marker of Type III cell)-positive taste cells by a single taste cell RT-PCR and found that the ratio of positively stained cell numbers were 17.4, 6.5, 84.1, 70.3, and 1.4% for PLCbeta2, SNAP25, NT3, BDNF, and TrkB, respectively. In addition, all of PLCbeta2- and SNAP25-positive taste cells expressed NT3 mRNA, except for one taste bud cell. The ratios of NT3 mRNA expressions were 100% and 91.7% in the SNAP25- and PLCbeta2-positive taste cells, respectively. However, two TrkB-positive taste cells co-expressed neither PLCbeta2 nor SNAP 25. The results suggest that the most of type II or type III cells express BDNF and NT3 mRNA, but the expression is shown to be less in type I taste cells.


Subject(s)
Animals , Humans , Male , Rats , Brain-Derived Neurotrophic Factor , Cell Count , Nerve Growth Factor , Nerve Growth Factors , Protein-Tyrosine Kinases , Rats, Sprague-Dawley , RNA, Messenger , Taste Buds
9.
Journal of Biomedical Research ; : 13-17, 2013.
Article in Korean | WPRIM | ID: wpr-87605

ABSTRACT

Taste receptors of the anterior tongue are innervated by the chorda tympani (CT) branch of the facial (VIIth) nerve. The CT nerve transmits information on taste to the ipsilateral nucleus of the solitary tract (NST), which is the first taste central nucleus in the medulla. Taste information is known to be transferred ipsilaterally along the taste pathway in the central nervous system. Some patients with unilateral CT damage often retain their ability to sense taste. This phenomenon is not explained by the unilateral taste pathway. We examined whether neurons in the NST receive information on taste from the contralateral side of the tongue by measuring c-Fos-like Immunoreactivity (cFLI) following taste stimulation of the contralateral side of the tongue in the anesthetized rats. We used four basic taste stimuli, 1.0 M sucrose, 0.3 M NaCl, 0.01 M citric acid, 0.03 M QHCl, and distilled water. Stimulation of one side of the tongue with taste stimuli induced cFLI in the NST bilaterally. The mean number of cFLI ranged from 23.28 +/- 2.46 by contralateral QHCl to 30.28 +/- 2.26 by ipsilateral NaCl stimulation. The difference between the number of cFLI in the ipsilaterl and contralateral NST was not significant. The result of the current study suggests that neurons in the NST receive information on taste not only from the ipsilateral but also the contralateral side of the tongue.


Subject(s)
Animals , Humans , Rats , Central Nervous System , Citric Acid , Neurons , Solitary Nucleus , Sucrose , Tongue , Water
10.
International Journal of Oral Biology ; : 1-7, 2012.
Article in Korean | WPRIM | ID: wpr-45686

ABSTRACT

Opioid receptors have been pharmacologically classified as micro, delta, kappa and epsilon. We have recently reported that the antinociceptive effect of morphine (a micro-opioid receptor agonist), but not that of beta-endorphin (a novel micro/epsilon-opioid receptor agonist), is attenuated by whole body irradiation (WBI). It is unclear at present whether WBI has differential effects on the antinociceptive effects of micro-, delta-, kappa- and epsilon-opioid receptor agonists. In our current experiments, male ICR mice were exposed to WBI (5Gy) from a 60Co gamma-source and the antinociceptive effects of opioid receptor agonists were assessed two hours later using the hot water (52degrees C) tail-immersion test. Morphine and D-Ala2,N-Me-Phe4,Gly-olenkephalin(DAMGO), [D-Pen2-D-Pen5]enkephalin (DPDPE), trans-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide (U50,488H), and beta-endorphin were tested as agonists for micro, delta, kappa, and epsilon-opioid receptors, respectively. WBI significantly attenuated the antinociceptive effects of morphine and DAMGO, but increased those of beta-endorphin. The antinociceptive effects of DPDPE and U50,488H were not affected by WBI. In addition, to more preciously understand the differential effects of WBI on micro- and epsilon-opioid receptor agonists, we assessed pretreatment effects of beta-funaltrexamine (beta-FNA, a micro-opioid receptor antagonist) or beta-endorphin1-27 (beta-EP1-27, an epsilon-opioid receptor antagonist), and found that pretreatment with beta-FNA significantly attenuated the antinociceptive effects of morphine and beta-endorphin by WBI. beta-EP1-27 significantly reversed the attenuation of morphine by WBI and significantly attenuated the increased effects of beta-endorphin by WBI. The results demonstrate differential sensitivities of opioid receptors to WBI, especially for micro- and epsilon-opioid receptors.


Subject(s)
Animals , Humans , Male , Mice , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer , beta-Endorphin , Enkephalin, Ala(2)-MePhe(4)-Gly(5)- , Enkephalin, D-Penicillamine (2,5)- , Mice, Inbred ICR , Morphine , Naltrexone , Receptors, Opioid , Water , Whole-Body Irradiation
11.
International Journal of Oral Biology ; : 103-108, 2011.
Article in Korean | WPRIM | ID: wpr-9935

ABSTRACT

Measurement of estrogen concentration in bio-samples are very important for differential diagnosis of various disease or evaluation of health status. However, it is difficult to collect immediate data of estrogen concentration because they are measured by radioimmunoassay or chromatography which need time- and cost-consuming sample pre-treatment. This study was performed for development of new estrogen biosensor employing taste principles, and for evaluation of cross reactivity between various steroid hormones. Gene sequence of ligand binding domain of alpha-human estrogen receptor (amino acid 302-553; hER-LBD) was cloned from human breast cancer cell line. The proteins of hER-LBD were produced by T7-E.coli expression system, and isolated by chromatography. hER-LBD were coated on the gold plated quartz crystal (AT-cut 9MHz), and resonance frequencies were measured by universal frequency counter. Estradiol, progesterone, testosterone, and aldosterone were used for cross reactivity of the hER-LBD. We also monitored influences of pH change in resonance frequency. The resonance frequencies of hER-LBD coated quartz crystal were decreased during increase of estrogen concentration from 15 microg/mL to 50 microg/mL. However, similar steroid hormones, progesterone and aldosterone, did not elicit the change in resonance frequency. Testosterone evoke weak change in resonance frequency. The new estrogen biosensor was more sensitive in pH 7.2 than in pH 7.6. These results suggest that hER-LBD coated quartz crystal biosensor is a probable estrogen biosensor.


Subject(s)
Humans , Aldosterone , Biosensing Techniques , Breast Neoplasms , Cell Line , Chromatography , Clone Cells , Collodion , Diagnosis, Differential , Endocrine Disruptors , Estradiol , Estrogens , Hydrogen-Ion Concentration , Organothiophosphorus Compounds , Progesterone , Proteins , Quartz , Radioimmunoassay , Testosterone
12.
The Korean Journal of Physiology and Pharmacology ; : 455-460, 2009.
Article in English | WPRIM | ID: wpr-727457

ABSTRACT

Glutamate-induced cobalt uptake reveals that non-NMDA glutamate receptors (GluRs) are present in rat taste bud cells. Previous studies involving glutamate induced cobalt staining suggest this uptake mainly occurs via kainate type GluRs. It is not known which of the 4 types of taste bud cells express subunits of kainate GluR. Circumvallate and foliate papillae of Sprague-Dawley rats (45~60 days old) were used to search for the mRNAs of subunits of non-NMDA GluRs using RT-PCR with specific primers for GluR1-7, KA1 and KA2. We also performed RT-PCR for GluR5, KA1, PLCbeta2, and NCAM/SNAP 25 in isolated single cells from taste buds. Taste epithelium, including circumvallate or foliate papilla, express mRNAs of GluR5 and KA1. However, non-taste tongue epithelium expresses no subunits of non-NMDA GluRs. Isolated single cell RT-PCR reveals that the mRNAs of GluR5 and KA1 are preferentially expressed in Type II and Type III cells over Type I cells.


Subject(s)
Animals , Rats , Cobalt , Epithelium , Glutamic Acid , Kainic Acid , Rats, Sprague-Dawley , Receptors, Glutamate , Receptors, Kainic Acid , RNA, Messenger , Taste Buds , Tongue
SELECTION OF CITATIONS
SEARCH DETAIL